Advanced Academic Programs (AAP) is a division of the Krieger School of Arts and Sciences at the Johns Hopkins University (JHU). As the nation's oldest and one of the most prestigious research universities, Johns Hopkins offers high-quality master's degrees and post-baccalaureate education to students in the mid-Atlantic region and online. In addition to the online programs, AAP also offers master's degrees and graduate certificate programs at its Washington, DC Center and at the Homewood campus in Baltimore, MD. AAP has approximately 18,000 enrollments each academic year. JHU is committed to hiring candidates who, through their teaching and service, will contribute to the diversity and excellence of the academic community.
Position Description:
The Center for Biotechnology Education within AAP seeks non-tenure track adjunct faculty to teach the Division of Biotechnology graduate-level lecture and laboratory courses listed below. The instructor will teach online and/or on the Homewood campus. Of particular interest are candidates who have experience teaching and engaging students from diverse backgrounds. In your submission materials, please include the course(s) from the list that you are interested in teaching.
Molecular Biology - 410.602
This course provides a comprehensive overview of the key concepts in molecular biology. Topics to be covered include nucleic acid structure and function, DNA replication, transcription, translation, chromosome structure, and the remodeling and regulation of gene expression in prokaryotes and eukaryotes. Extended topics to be covered include methods in recombinant DNA technology, microarrays, and microRNA.
Advanced Cell Biology - 410.603
This course covers cell organization and subcellular structure. Students examine the evolution of the cell, chromosome, and plasma membrane structures and behaviors, as well as the mechanics of cell division, sites of macromolecular synthesis and processing, transport across cell membranes, cell dynamics, organelle biogenesis, and cell specialization. Students are also introduced to the experimental techniques used in cell biology to study cell growth, manipulation, and evaluation.
Cellular Signal Transduction - 410.604
This course is a continuation of 410.603 Advanced Cell Biology and further explores cell organization and subcellular structure. Students examine cell-to-cell signaling that involves hormones and receptors, signal transduction pathways, second messenger molecules, cell adhesion, extracellular matrix, cell cycle, programmed cell death, methylation of DNA, modification of chromatin structure, and mechanisms of the cell. The roles that defects in signal transduction pathways play in the development of cancer and other disease states will be stressed.
This laboratory course introduces students to the methods and techniques used for biothreat detection, surveillance, and identification. Using bio simulants and demonstrations, various bio detection platforms will be discussed and presented, such as point-of-detection devices and methods, laboratory-based screening and identification technologies (culture, quantitative PCR, immunoassays, biosensors), and high-throughput environmental surveillance methods. Statistical methods for determining diagnostic sensitivity and specificity and assay validity will be discussed. Laboratory practices and procedures for working in simulated Biosafety Level 2 and 3 environments will be practiced. Students will be introduced to the current bioinformatics genomic and proteomic databases used for select agent (category A, B, and C) identification and characterization.
Immunological Techniques in Biotechnology - 410.660
This laboratory course introduces students to methods for analyzing the immune system. Participants gain experience with various immunologic techniques used in research and biotechnology laboratories, such as immunoassays, immunofluorescence, western blot analysis, SDS-PAGE, antibody purification (protein A), and cytokine assays. Additional topics for discussion include hybridism technology phage antibody libraries, therapeutic monoclonal antibodies, and flow cytometry.
Bioprocessing and Scale-up Laboratory - 410.731
This course will provide students with hands-on experience in the process development of biological products from a cell bank through purification. Students will develop products produced in bacteria, mammalian cells, and insect cells. Students will optimize growth conditions on a small scale and then produce the biologic in a larger-scale vessel. Students will then purify the product after optimizing purification conditions. Topics to be covered include microbial fermentation, cell culture production, bioassays, product purification, and the regulatory, engineering, and business principles associated with the scale-up of a biologic product.
Stem Cell Culture Laboratory Methods - 410.780
This laboratory course introduces students to the cultivation and differentiation of stem cells. Students are introduced to cell cultivation methods for three types of stem cells and the basics of tissue engineering. Students will scale-up cells into mini-bioreactors for large scale use. The class will include industry-wide practices in cGMP.
Qualifications
Minimum Qualifications:A successful candidate would ideally be able to begin teaching in Spring/Summer 2023.
A Master's degree in the Biological Sciences or in a relevant field.
Professional and/or scholarly experience in Biotechnology or the listed courses.
One year of college-level teaching experience.
Preferred Qualifications:
A Ph.D. or terminal degree in the Biological Sciences or in a relevant field.
The background to teach a wide variety of courses in Biotechnology.
The ability to teach both on campus and online courses.
Two or more years of graduate-level teaching experience.
Experience in curriculum development and implementation.
Application Instructions
The position will remain open until filled.
Candidates must submit the following:
Cover letter (in your cover letter, please indicate which course(s) you are applying to teach for)
Curriculum vitae
Teaching evaluations for two most recently taught courses
Official transcript from the highest degree-granting institution (typically at Master's or Doctoral level)
Teaching statement/philosophy
References upon request
The selected candidate will be expected to undergo a background check and to submit proof of educational attainment.
Johns Hopkins University remains committed to its founding principle, that education for all students should be grounded in exploration and discovery. Hopkins students are challenged not just to learn but also to advance learning itself. Critical thinking, problem solving, creativity, and entrepreneurship are all encouraged and nourished in this unique educational environment. After more than 130 years, Johns Hopkins remains a world leader in both teaching and research. Faculty members and their research colleagues at the university's Applied Physics Laboratory have each year since 1979 won Johns Hopkins more federal research and development funding than any other university. The university has nine academic divisions and campuses throughout the Baltimore-Washington area. The Krieger School of Arts and Sciences, the Whiting School of Engineering, the School of Education and the Carey Business School are based at the Homewood campus in northern Baltimore. The schools of Medicine, Public Health, and Nursing share a campus in east Baltimore with The Johns Hopkins Hospital. The Peabody Institute, a leading professional school of music, is located on Mount Vernon Place in downtown Bal...timore. The Paul H. Nitze School of Advanced International Studies is located in Washington's Dupont Circle area.